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Dynamical Monte Carlo study of equilibrium polymers:
Effects of high density and ring formation
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An off-lattice Monte Carlo algorithm for solutions of equilibrium polymers~EPs! is proposed. At low and
moderate densities this is shown to reproduce faithfully the~static! properties found recently for flexible linear
EPs using a lattice model. The molecular weight distribution~MWD! is well described in the dilute limit by a
Schultz-Zimm distribution and becomes purely exponential in the semidilute limit. Additionally, very concen-
trated molten systems are studied. The MWD remains a pure exponential in contrast to recent claims. The
mean chain mass is found to increase faster with density than in the semidilute regime due to additional
entropic interactions generated by the dense packing of spheres. We also consider systems in which the
formation of rings is allowed so that both the linear chains and the rings compete for the monomers. In
agreement with earlier predictions the MWD of the rings reveals a strong singularity whereas the MWD of the
coexisting linear chains remains essentially unaffected.

PACS number~s!: 82.35.1t, 61.25.Hq, 64.60.Cn
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I. INTRODUCTION

The molecular mass distribution~MWD! of systems of
linear unbranched equilibrium polymers~EPs! is essentially
exponential@1#. In EP systems polymerization takes pla
under condition of chemical equilibrium between polym
chains and their respective monomers. A classical exam
we will focus on is provided by systems of surfactants for
ing polydisperse solutions of long worm-like aggregat
called giant micelles~GMs!, which combine with each other
or break into smaller fractions@2#.

Despite polydispersity, EPs resemble in many aspe
conventional quenched polymers where the polymeriza
reaction has been deliberately terminated. Recently, the b
scaling predictions for EPs@2# based on classical polyme
physics@3# have been tested by two of us~A.M., J.P.W.! @1#
by means of a lattice Monte Carlo simulation based on
widely used bond-fluctuation model~BFM! @4#. This demon-
strated excellent agreement with theory over a very br
range of density and temperature variation. Specifically
was shown that the MWD takes the form

c~x!dx}H exp~2x!dx ~N* @^N&,f* !f!,

xg21 exp~2gx!dx ~N* !^N&,f* @f!.
~1!

The scaling parameterx5N/^N& is the ratio of the chain
massN and the mean mass^N&, N* andf* mark the mean
mass and the density at the crossover from dilute to sem
lute regimes at given scission energyE, andg'1.158 is the
susceptibility exponent of then→0 vector model in three-
dimensions~3D! @5#. The mean chain lengtĥN& was con-
firmed to vary with densityf and the~dimensionless! sciss-
ion energyE as

*Electronic address: jwittmer@dpm.univ-lyon1.fr
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^N&'N* ~f/f* !a}fa exp~dE! ~2!

with exponentsa I5d I51/(11g)'0.46 in the dilute and
a II 5@11(g21)/(3n I21)#/2'0.6, d II 51/2 in the semidi-
lute regime. The exponentn I'0.588 is the swollen chain
~self-avoiding walk! exponent in 3D.

Recently, these results have been questioned in an in
esting computational study where a reptation algorithm w
used on a cubic lattice@6#. It was suggested that the MWD
becomes singularc(N)}N2t with t'0.56 at very high vol-
ume fractions of order unity. This finding, if corroborate
might be of some relevance in view of the observed Le
flight dynamic behavior in a system of GMs@7#. This claim
prompted the present off-lattice Monte Carlo~OLMC! ap-
proach to be applied to the high density limit which was n
accessible within our previous approach. We stress that
fects only occurring at volume fractions of order one a
unlikely to be relevant for real GM, but would be interestin
on more general theoretical grounds in that the MWD in f
probes the free energy of the dense packing of beads.

As we are going to show, new physics~i.e., additional
terms in the system free energy! intervenes indeed due t
packing effects of the spherical beads. This increases ef
tively the growth exponenta for ^N&, but does not effect the
scaling form of the MWD. We do not observe any trace
singularity—in perfect agreement with the analytical pred
tions @2,8#.

The investigation of the high density limit is only on
motivation for the off-lattice algorithm proposed. In additio
to this an effective OLMC for the EP algorithm is highl
warranted to overcome the usual shortcomings of lat
models and to serve in examining the role of polymers se
flexibility. It is also a better tool in dynamic studies of
broader class of soft condensed matter systems where bif
tionality of the chemical bonds might be extended to po
functional bonds, as this is the case in gels and membra
2959 ©2000 The American Physical Society
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FIG. 1. Sketch of algorithm:~a! Bonds between spherical beads break and recombine constantly with rates depending on the
energyE which is assumed independent of massN and number densityf. Each monomer has two~saturated or unsaturated! bonds. Chains
consist of symmetrically connected lists of bonds. The data structure is based on the bonds rather than the polymer chains.~b! Plots of
bonded ~FENE! and nonbonded~Morse! interactions used in the present model. The shaded area denotes distances where s
recombination events may take place.
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Note that the OLMC was already applied successfully
rheological properties of EP reported in Ref.@9# and to sys-
tems of EP brushes@10#.

The scope of this paper is threefold. We want to pres
the OLMC scheme and to test it by comparing the new
sults with previous findings~in the dilute and semidilute re
gime! obtained by means of our lattice Monte Carlo a
proach described in Ref.@1#. Secondly, we wish to addres
the physics in the melt density regime. In addition, t
OLMC algorithm is tested in systems in which the formati
of closed loops is allowed. We demonstrate in a compu
experiment that there is a singularity of the ring MW
c0(N)}N2t wheret55/2 in 3D @11,12#.

This paper is organized as follows. After presenting
algorithm in Sec. II we focus in Sec. III on the differe
density and chain length regimes reflected, e.g., by the
tribution of the radius of gyration̂Rg

2(N)& versus massN
and other conformational properties. We discuss sub
quently the MWD in Sec. IV. There we compare our OLM
results for mixed systems~in which rings are also presen!
with data obtained with the BFM and with a grand canoni
lattice algorithm based on the mapping of the EP problem
a Potts model. The scaling of the mean chain mass is c
sidered in Sec. V. The theoretical concepts~which have al-
ready been extensively considered elsewhere@2,8#! are
briefly discusseden passant. We show that agreement of th
OLMC with our previous work is excellent for small an
moderate densities. For volume fractions larger than 0.1
evidence a third molten regime. In Sec. VI we summar
our findings.

II. COMPUTATIONAL ALGORITHM

It is clear that in a system of EP where scission and
combination of bonds constantly take place, the particu
scheme of bookkeeping should be no trivial matter@13#.
Since chains are only transient objects the data structur
the chains can only be based on the individual monomers
even better, on the saturated or unsaturated bonds@1#. This
idea is depicted in Fig. 1~a!. Each bond is considered as
pointer, originating at a given monomer and pointing to t
respective other bond with which the couple forms a nea
neighbor, or to NIL~nowhere!, if the bond is free~unsatur-
o
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ated!. Chains consist of symmetrically connected lists
bonds: j bond5pointer(ibond)↔ ibond5pointer(j bond).
Recombination of the two initially unsaturated bondsibond
52 and j bond55 connects the respective monomersimon
52 and j mon55 in Fig. 1~a!. Note that only two pointers
have to be changed and that the remaining chains be
both monomers are not involved. Breaking a saturated b
ibond requires resetting the pointers of the two connec
bondsibond andj bond5pointer(ibond) to NIL.

As mentioned in the Introduction this data structure h
been incorporated@1# within the widely used BFM algorithm
@4#. For the off-lattice version presented here we have n
harnessed a very efficient bead-spring algorithm for polym
chains~for technical details see Ref.@14#! and cast it onto the
data structure described above. This off-lattice Monte Ca
~OLMC! scheme is characterized by the bonded and the n
bonded interactions shown in Fig. 1~b!.

Each bond is described by a shiftedFENE potential where
a bond of lengthr has a maximum atr max51

UFENE~r !52K~r max2r 0!2lnF12S r 2r 0

r max2r 0
D 2G2E. ~3!

E corresponds to a constant scission energy. Note
UFENE(r 5r 0)52E and thatUFENE near its minimum atr 0
is harmonic, withK being the spring constant, and the p
tential diverges logarithmically to infinity both whenr
→r max and r→r min52r 02r max. Thus the FENE potentia
does not need to be truncated atr min and r max and disconti-
nuities in the derivative of the potential are avoided. Follo
ing Ref. @14# we choose the parametersr max2r 05r 02r min
50.3 andK/T540, T being the absolute temperature. Th
units are such that the Boltzmann’s constantkB51.

The nonbonded interaction between effective monom
is described by a Morse-type potential,r being the distance
between the beads

UM~r !5exp@22a~r 2r min!#22 exp@2a~r 2r min!# ~4!

with parametersa524 andr min50.8. The latter paramete
sets roughly the sphere diameter. TheQ temperature of the
coil-globule transition for our model isQ'0.62 so that at
T51 we work under good solvent conditions@14#.
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The model can be simulated fairly efficiently with a d
namic MC algorithm, as described previously@14#. The trial
update involves choosing a monomeric unit at random
attempting to displace it randomly by displaceme
Dx,Dy,Dz chosen uniformly from the interval20.5
<Dx,Dy,Dz<0.5. Moves are then accepted according
the Metropolis criterion and one Monte Carlo step~MCS!
involves as many attempted moves as there are monome
the system.

In equilibrium polymers the bonds between neighb
along the backbone of a chain are constantly subject to s
ion and recombination events. In the present model o
bonds, stretched a distancer beyond some threshold value
r b , are attempted to break so that eventually an ene
UFENE(r ).0 could be released if the bond breaks. Sin
each monomer may have at most two bonds in the s
time, all particles with unsaturated bonds~two for single
monomers and one for chain ends! may form new bonds,
once they approach each other within the same interva
distancesr b<r<1 where scissions take place.~Note that
recombination forr ,r b would violate detailed balance.!

We do not allow for branching in the present study. Ho
ever, more than two bonds per monomer are possible in p
ciple and this feature may be readily included in the algor
mic framework. The generalization on netted structures s
as membranes or sponges is evident.~Note that this is less
straightforward in the BFM scheme due to its lattice char
ter which generates ergodicity problems.! Obviously, another
big advantage of the off-lattice scheme compared to its
tice precursor is its applicability to rheological problem
@10#.

In most parts of this paper we focus on systems where
formation of ring polymers is allowed. This condition has
be observed whenever an act of polymerization takes pl
Because there is no direct chain information in the data st
ture this has to be done by working up the list of pointe
~which adds only four lines to the source code!. In physical
time units the simulation becomesfaster for higher E: the
number of recombinations per unit time goes as exp(2E),
but the chain mass only grows as exp(E/2). Obviously, the
algorithm becomes even faster for the mixed systems
cussed in Sec. IV B where the ring closure constraint
been dropped.

III. CONFORMATIONAL PROPERTIES

The presented algorithm allows us to simulate a la
number of particles at very modest expenses of operati
memory. Most of the results in the present study invo
65536 particles for number densities betweenf50.125 up
to f51.5. Note that our highest densities correspond to v
concentrated solutions. This can be better seen from the
ume fractions which vary betweenvf'0.03 and 0.33. The
latter value has to be compared with the~only slightly larger!
hard-sphere freezing volume fraction~‘‘Alder transition’’ ! of
about one half@16#—it correponds, in fact, to a relativel
dense hard-sphere liquid. Note also that dense globule
maximalf'2 are formed by quenched monodisperse po
mers in bad solvent@15#.

The effective bead volumev'p l 3/6'0.22 used above
was estimated with the measured mean bond lengthl'0.75
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from Table I.~Note thatl is weakly decreasing with densit
@14# and that it is slightly smaller than the ‘‘bead diamete
given by the shifted Morse parameterr min .) A similar, mar-
ginally larger volume ofv'0.25 may be obtained from th
virial expansion for quenched polymers@15#.

The scission energyE was varied in a similar range as i
Ref. @1# from E54 up toE512 to yield sufficiently strong
chain mass variation. Note that the^N& remains always two
orders of magnitude smaller than the total particle num
within the box. Hence, from our previous study@1# one ex-
pects finite box-size effects to be small. This was inde
borne out by finite-size test performed by varying the b
sizes from 163 over 323 to 643. Only the results from the
largest boxes simulated for a configuration (E,f) are re-
ported here.

Periodically the whole system is examined, the MW
c(N) ~discussed in the subsequent section! and the distribu-
tions of the squared end-to-end distance^Re

2(N)& and gyra-
tion radius,̂ Rg

2(N)& ~averaged over all chains of aparticular
massN) are counted and stored.~Periodic boundary condi-
tions are implemented and interactions between monom
follow the minimum image convention. The computation
the conformational properties of the chains then imply a r
toration ofabsolutemonomer coordinates from the period
ones for each repeating unit of the chain.! Moments obtained
from these distributions are presented in Tables I and II.

The different simulational regimes are most easily de
onstrated by the conformational changes with density
chain mass. We demonstrate that the conformational pro
ties for EP follow the same universal functions as conv
tional quenched polymers. In Fig. 2̂Re

2(N)&1/2 and

TABLE I. Summary of measured quantities for configuratio
with ^N&.20. Quantities tabulated: the mean chain mass^N&, the
polydispersity indexI 5^N2&/^N&2, the mean end-to-end distanc
Re , the mean gyration radiusRg , and the chain overlapf/f* .
Note thatI increases systematically with chain overlap.

f E ^N& I Re Rg f/f*

0.125 8 25 1.86 6.4 2.5 0.3
0.125 9 42 1.88 8.7 3.4 0.5
0.125 10 66 1.89 12.2 4.5 0.7
0.125 11 108 1.93 14.8 5.9 1.0
0.125 12 181 1.95 19.9 8.0 1.5
0.25 7 24 1.88 6.0 2.4 0.6
0.25 8 38 1.90 7.9 3.2 0.9
0.25 9 63 1.93 10.4 4.2 1.2
0.25 10 102 1.93 13.6 5.5 1.7
0.25 11 166 1.92 17.5 7.1 2.3
0.25 12 270 1.99 23.1 9.3 3.1
0.5 7 38.4 1.92 7.9 3.2 1.8
0.5 8 62 1.94 10.3 4.2 2.5
1 5 28 1.92 5.8 2.3 1.9
1 6 46 1.94 7.5 3.0 2.5
1 7 74 1.94 9.6 3.9 3.4
1 8 123 1.96 12.7 5.2 4.8
1.38 7 105 1.97 10.9 4.5 5.0
1.5 6 73 1.95 8.6 3.6 4.0
1.5 7 120 1.97 10.6 4.6 5.1
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^Rg
2(N)&1/2 are plotted versusN. One configuration in the

dilute regime and one in the concentrated limit~both at same
E57) have been presented. In the first case one clearly
the swollen coil exponent. From the upper dashed line
persistence length of swollen EP is estimated asb
5Re /N0.588'0.92. In the latter case only chains smaller th
the excluded volume blob of sizej size are swollen. Large
chains (N@g) show Gaussian behavior withRe /A6'Rg
}N1/2. This slope was used to estimate the variation of
effective persistence lengthb5Re /N0.5 with f. As can be
seen from Table IIb decreases with increasing density, hen
with decreasing blob sizej which we have estimated directl
from the intercept of the two slopes at the radius of gyrati
Note thatj is relatively small for the densities computed.

The averages over all chains of the mean-square end
end distanceRe and the radius of gyrationRg are plotted
versuŝ N& in Fig. 3. Swollen and Gaussian scaling behav
are again obtained for low and strong chain overlap resp
tively. Note that, e.g., the chains forf51 are Gaussian fo
^N&>10. Thus the position of a particular configuratio
(E,f) with respect to the crossover from dilute to semidilu

TABLE II. Density dependence of mean bond lengthl 5^ l 2&1/2,
the persistence lengthb for Gaussian chains of blobs, the blob si
j estimated from the slopes in Fig. 2, and the free energy fa
f 1(f) obtained from the exponential tail of the MWD as explain
in Sec. IV.

f l b j f 1

0.125 0.7574 1.41 4.7 0.5
0.25 0.7565 1.33 4.0 0.65
0.5 0.7530 1.2 3.8 0.9
1.0 0.7408 1.12 3.3 1.66
1.38 0.7234 1.05 2.8 1.97
1.5 0.7158 1.02 2.5 2.21

FIG. 2. Variation of the end-to-end distanceRe ~triangles! and
the radius of gyrationRg ~squares! with chain massN at E57 for
dilute ~open symbols:E57,f50.125) and concentrated~full sym-
bols: E57,f51) systems. The dashed lines denote the dilute
ponentn I50.588 which is visible for the dilute systems over th
full range of N and for the semidilute system for smallN, i.e.,
within the blob. The slopen II 51/2 indicates the Gaussian statisti
for strongly overlapping long chains.
es
e
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regime can be determined. This is consistent with the va
f/f* given in Table I wheref* 5^N&/(4pRg

3/3) as usual.

IV. MOLECULAR WEIGHT DISTRIBUTION

We focus first on systems without rings, as in the rest
the paper, and consider then the effects due to the ring
sure constraint by allowing linear chains and rings to co
pete.

A. Systems without rings

Figure 4 displays a typical MWDc(N) obtained with the
OLMC algorithm at high density (f51.5). This is compared
with BFM data. The c(N) is normalized such thatf
5(NNc(N). Note that the free monomers are counted
chains of lengthN51. Both curves display to high accurac
nice exponentials. This is a generic result for strongly ov

or

-

FIG. 3. End-to-end distanceRe and radius of gyrationRg vs
mean chain masŝN&. At small density (f50.125,0.25) and,
hence, weak chain overlap the chains are swollen~dashed line!. At
high density and mass we obtain Gaussian statistics~solid lines!.

FIG. 4. MWD c(N) versusN at high density for OLMC~upper
curve; E57,f51.5) and BFM~lower curve;E57,8f50.5) sys-
tems. Note that the distribution is always a pure exponential andno
sign of singularity was found for whatever density or energy. Th
curves are used to fitf 1. For OLMC we havê N&'119, f 1'2.21,
for BFM ^N&'98, f 1'2.85.
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lapping chains—even at extremely high volume fractio
Notably, at variance with a recent finding@6# no sign of
singularity is observed.

In order to corroborate this result we try to scale t
MWD obtained for different densities and scission energ
In Fig. 5 we have plotted the~properly normalized! MWD
versus the natural scaling variablex5N/^N&. In the high
density limit ~main figure! data from two densities at variou
scission energiesE ~as indicated in the figure! collapses on a
single ‘‘master distribution’’c(x)5exp(2x). In the dilute
limit, i.e., for the nonoverlapping chains shown in the ins
we find again a data collapse, but with slightly differe
slope in linear-log coordinates.~Obviously, for large chain
length the statistics deteriorates.!

How can these results be rationalized? Within a stand
Flory-Huggins mean-field approach@2# one may write the
total free energy density as

V@c~N!#5 (
N51

`

c~N!$ log@c~N!#1mN1 f chain~N,f,E!%.

~5!

The first term on the right is the usual translational entro
The second term entails a Lagrange multiplier which fix
the total monomer densityf. The most crucial last term
encodes the free energy of a reference chain of lengthN in
the field created by the surrounding chains and free mo
mers.f chain will in general depend on the chain lengthN, the
densityf, and the bonded and nonbonded interaction par
eters of the model studied@17#. We have not computed her
irrelevant additive terms~such as virial terms! which are not
conjugated toc(N). By functional derivation with respect to
c(N) one readily obtains the equilibrium MWD

c~N!5exp@2E2 f end~N,f,E!2mN#. ~6!

We have defined heref end5 f chain2E21 and absorbed al
contributions tof end linear in N within the Lagrange multi-
plier. Hence, within the mean-field approximation Eq.~5! the

FIG. 5. Data collapse of~properly normalized! MWD c(x) ver-
susx5N/^N& for OLMC. In the main figure the high density sca
ing predictionc(x)5exp(2x) is verified~full line!. The open sym-
bols denote densityf51 and the full symbolsf51.5. Inset: The
MWD in the dilute limit ~OLMC at f50.125) compares well with
the predictionc(x)}exp(2gx) ~dashed line!. The same symbols ar
used as in the main figure.
.
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MWD discussed above probes directly the free energy of
EP chain~besides the terms linear inN mentioned above
which are fixed by the imposed density! which essentially
‘‘renormalizes’’ the scission energyE.

We infer from Figs. 4 and 5 that for our EP chainsf end is
to very high accuracy mass independent. Two classical
amples where this is indeed rigorously true are noninter
ing rigid rods and Gaussian chains@2#. ~There f end is even
independent off.! If this is the case, the MWD become
then a pure exponential

c~N!dN/f5c~x!dx5exp~2x!dx, ~7!

where the scaling variable isx5N/^N&, i.e. the inverse
Lagrange multiplier equals the mean-chain length^N&m51.

This is in agreement with our scaling in the high dens
limit which implies that f end is within numerical accuracy
independent ofN. We have explicitly checked that here th
MWD scales asc(N)}exp@2E2fend(f)2N/^N&# where
f end only depends onf. The slightly different slope found in
the dilute regime suggests, however, a weak mass effect.
relatively simple to understand these results from the s
dard theory of polymers in good solvent solutions@1#. There
the chemical potential of ends is given byf end52(g
21)/n I ln(j) wherej is size of the ‘‘blob,’’ i.e., the excluded
volume correlation length for chains of lengthN at density
f.

In the semidilute limit we havej}gn I}f2n I /(3n I21) @3#
(g denotes the number of monomers within a blob!, hence

f end5~g21!/~3n I21!ln~f/f0! ~8!

is independent of mass and scission energy. The cons
reference densityf0 was introduced here for dimension
reasons. Obviously, Eq.~8! can strictly hold only in the
asymptotic limit of large blob sizes (f→0). Additionally,
one cannot exclude weak chain-length dependence off end at
N'1, but this becomes irrelevant in the scaling limit
^N&@1 @18#.

In the opposite dilute limit the correlation length becom
density independent and is given by the size of the chaij
5R}Nn. Hence,f end5(g21)ln(N) and the MWD becomes
the Schultz-Zimm form given in the Introduction@Eq. 1!#.
Note that theg exponent in 3D is only slightly larger than it
mean field valueg51. Hence, the predicted power la
depletion in the MWD for smallN is very weak and requires
a relatively large mean chain mass^N&@1. This is why
within the range of the parameters accessible essentially
the slightly different exponential tailc(x)}exp(2gx) is vis-
ible.

Obviously, some of our simulations are in the interme
ate regime (f'f* ) between these limiting cases~depicted
by the two slopes in Fig. 5!. In order to characterize all the
MWD with one parameter we fitted the tail of ln@c(N)# with
2E2 f 12mN where bothm and f 1 are fit parameters. In the
dense limit naturally one findsm^N&5geff'1. As soon as
the overlap decreasesgeff→g. Note that thef 1 variation with
E for given f is weak and we have only tabulated the val
for the highestE, i.e., for the most strongly overlappin
chains. The values are given in Table II and are discusse
the subsequent Sec. V.
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B. Mixed systems with linear chains and rings

First we briefly assess the importance of the ring clos
constraint. We allow the formation of rings so that both li
ear chains and rings may coexist and compete for the mo
mers. In Fig. 6 we present the MWD of ringsc0(N) and of
linear chainsc1(N) at densityf51.5 andE57. The linear
chains appear to be unaffected by the presence of rings
scale, as before,c1(N)}exp(2mN) where the slopem is
given by the inverse of the mean mass of thelinear chains
N1. This can be easily understood by generalizing the Flo
Huggins expression Eq.~5! as a sum over the two differen
speciess50,1. The two different MWD decouple and th
functional derivation with respect to both yields simp
cs(N)5exp@2fchain

s (N,f,E)2Nm# for both species in anal
ogy with Eq. ~6!. The free energy of the linear chain
f chain

1 5E111 f end as before. In the strong overlap regim
f end becomes again independent of massN ~hence, the pure
exponential seen forc1(N)] and, as a matter of fact, equa
the density dependent valuef 1(f) obtained for the purely
linear systems which is tabulated in Table II. Therefore
mean mass of linear chains determines once again the ch
cal potentialm.

However, our systems offlexible rings appear to be ring
dominated, i.e., much more monomers are contained
closed loops than in linear chains, as expected. In contra
systems of semiflexible polymer chains the formation
rings is going to be strongly suppressed@12#. The MWD of
rings is not exponential, but rather shows a clearly p
nounced power law behaviorc0(N)}N2t where t52.5.
~This does not exclude, however, a final exponential cut
which can hardly be detected because of the domina
power law.! The exponentt can be obtained by a simpl
argument due to Porte@11#. The ratio of both MWD gives
the ratio of the two partition functionsZs

c0~N!

c1~N!
5

Z0~N!

Z1~N!
5exp~ f chain

1 2 f chain
0 !. ~9!

The ratioZ1 /Z0 is equal to the probability of opening
loop, which must be proportional to~i! the Boltzmann
weight, exp(2E), due to the constant scission energy,~ii ! the

FIG. 6. MWD for mixed systems containing rings. Main figur
c0 MWD of rings ~spheres!, c1 MWD of linear chains~squares!.
Inset: Ring MWDs for different models and dimensions. The in
cated slopes confirmt55/2 in 3D andt52 in 2D.
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number of places where the ring can breakN, and ~iii ! the
volumeRD}NDn that two neighboring segments can explo
after being disconnected (D denotes the dimension andn
the relevant Flory exponent at densityf). Hence, c0
}N2t exp(2N/N1) with t5Dn1155/2 at strong chain
overlap in D53, and t52 in D52 where n51/2. Both
exponents are well borne out by the measuredc0 slopes de-
picted in the inset of Fig. 6. We compare here data we
tained with three different algorithms OLMC, BFM, an
grand canonical Potts model~in 2D and 3D!. The exponents
in both dimensions are fully consistent with the predict
ones.

We return now again to systems containing linear cha
only.

V. SCALING OF THE AVERAGE CHAIN MASS

So far we have reported on the general form and sca
of the MWD. Now we want to go further and to investiga
the scaling of the average chain mass and the second
ment, i.e., the polydispersity indexI 5^N2&/^N&2 , with re-
gard to densityf and scission energyE ~see Table I!.

In the high density limit, i.e. within the validity of Eq.~7!,
the inverse Lagrange multiplier equals the mean-chain len
as mentioned above and the polydispersityI 52. From the
normalization constraintf5(NNc(N) one infers that the
mean mass is generally given by

^N&5m215Af exp@E1 f end~f!#. ~10!

For semidilute polymer chains one obtains from Eq.~10!
and Eq. ~8! ^N&}Af11(g21)/(3n I21)exp(E) in agreement
with the exponentsa II '0.6 andd II 51/2 quoted in the In-
troduction. Similarly, one finds in the dilute limita I5d I
51/(11g)'0.46 @1#.

In Fig. 7 we have plotted̂N& versusE to check for the
expected exp(dE) behavior. Despite the small difference
both values one distinguishes for dilute systems a slope w
d I50.46 and for the dense system (f51) d II 50.5. One can
verify on Fig. 7 that at concentrationf50.125 a crossover

-

FIG. 7. Variation of mean chain mass^N& with dimensionless
bond energyE for various number densitiesf as indicated in the
figure. At low chain overlap the data are consistent with the ex
nent d I50.46 ~dashed lines!, at hight density with the mean field
exponentd II 50.5 ~full lines!.
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into the semidilute regime forE'9 occurs whereby the
slope of the exponential function changes fromd I'0.46 to
d II 51/2, i.e., the isolated polymer coils get large enough
they start touching each other. Atf50.25 the concentration
is already sufficiently high so this happens at comparativ
lower energiesE.5. The d II 51/2-slopes confirm that a
high densitiesf end becomes chain length-independent a
that Eq.~10! holds. This scaling prediction is verified explic
itly in Fig. 8 where we have plotted̂N& versus the scaling
variable indicated by Eq.~10!. Here we have used the value
f 1(f,E) determined directly from the MWD. A plot using
the prediction for semidilute polymers Eq.~8! is, however,
not successful forf.0.5. Hence, the measuredf 1 encapsu-
lates physics other than the one expected in the limit of la
blobs. To corroborate this further we plot in Fig. 9u
5^N&2/@f exp(E)# versusf. From Eq.~10! we know thatu
5exp(fend) for strong overlap. Not surprisingly the data co
lapse in that limit, but not the dilute systems.~This will be
improved in Fig. 10, see below.! Also indicated are thef 1
~stars! directly estimated from the MWD in the strong cha
overlap limit. Notably, forf>0.5 the mean mass appears
increase much faster than the growth exponenta II 50.6.
This breakdown of Eq.~8!—but not of Eq.~10!—is not un-
expected if one bears in mind that the scaling arguments
only be valid in the limit@3# of f→0 andg→`, i.e. when
the blob is larger enough. This result suggests to rewrite
~8! as a systematic series expansion

f end~f!5B21 ln~f/f0!1B1f1•••, ~11!

where in order to match semidilute and melt regime
chooseB215(g21)/(3n I21)'2.1 andf0'0.018. The fit
using Eq.~11! with B1'0.8, depicted in Fig. 9, is only quali
tatively satisfactory and further study is warranted. T
above expansion is motivated by a recent second v
theory on wormlike micelles and rigid rods interacting v
hardcore excluded volume@8#. The applicability of this

FIG. 8. Scaling attempt in the high density limit for^N&. The
collapse confirms the scaling with respect tou in the high chain
overlap limit and thef 1 obtained independently from the MWD
c(N). Note that the remarkable good scaling works even in
dilute limit. The dashed line marks for comparison the dilute ex
nenta I .
o

ly

e

an
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theory to our systems offlexibleEP with persistence lengthb
of order of the sphere diameter~see Table II! appears to be
unclear. Nevertheless, it is interesting to note that the sec
virial coefficientB158/3v'0.6 predicted in Ref.@8# is rela-
tively close to the constant measured. Alternatively, the
pendence of̂N& on f might be represented by an effectiv
growth exponentaeff'1 ~dotted line!. These values agre
also favorably with an earlier lattice simulation@6# although
this is presumably accidental due to the different mic
scopic physics which must intervene.

A proper crossover scaling between dilute and semidil
regimes ~but not with regard to the molten regime! is
achieved by plottinĝ N&/N* versusf/f* in Fig. 10. The
crossover lengthN* }exp(2wE) with w5(1/22a I)/(a II
2a I)'0.26 and the crossover densityf* }exp(kE) with k

e
-

FIG. 9. A crude rescaling attempt of mean chain massu
5^N&2/@f exp(E)# versusf. Also indicated are the exp(f1) esti-
mated from the MWD~stars!. The mean chain mass rises faster f
large densitiesf>0.5. This regime is compared with an effectiv
exponentaeff'1 ~dotted line! and the nonalgebraic density depe
dence Eq.~11! with B2150.21 andB1'0.8 ~dashed-dotted line!.

FIG. 10. Dilute-semidilute crossover scaling^N&/N* vs f/f*
for OLMC and BFM~shifted downwards for clarity!. For densities
f>0.5 the OLMC data do not scale and are systematically ab
the semidilute asymptote. This is due to additional entropic inter
tions between the dense beads which increases the mean
mass.
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5aI(12w)'0.34 are readily found by matching th
asymptotic behaviors of the dilute and semi-dilute regim
We have included data from both OLMC and the BFM. F
clarity, the BFM data have been shifted downwards by
factor 10. As one anticipates from Fig. 9, only OLMC da
for f<0.5, i.e. volume fractions smaller than 0.1 collap
properly on the predicted asymptotes—confirming hence
polymer physics expressed in Eq.~8!—while at higher den-
sities simple liquids physics becomes relevant.

VI. SUMMARY

We have proposed here a new off-lattice Monte Ca
algorithm ~OLMC! for systems of equilibrium polymer
~EPs!. It is shown that this model faithfully reproduces th
results of Ref.@1#: the MWD of linear EP is essentially ex
ponential even in the limit of very high density in contrast
recent claim@6#. Note that our findings do not support th
specific explanation put forward in Ref.@7# for the observed
Levy-flight dynamic behavior in GM which requires a si
gularity in the MWD of linear chains. However, a simp
exponential law might be enough to explain an effect
Levy flight behavior for a certain regime of time scales@19#.

If ring formation is allowed, however, the MWD for ring
alone is strongly singular,c0(N)}N2t with t5Dn11. This
result has been confirmed both in two and in three dim
sions for different lattice and off-lattice models. We ha
also shown that the MWD of linear chains is not affected
the presence of rings in the system which demonstrates
the general Flory-Huggins approach is very accurate eve
this case.
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The mean chain length of linear EP is found to vary w
densityf and scission energyE as ^N&}faexp(dE) as ob-
served in our earlier bond fluctuation model investigation@1#
with exponentsa I5d I'0.46 in the dilute regime anda II
50.6,d II 50.5 in the semidilute regime. This holds only fo
volume fractions smaller than 0.1.

At higher densities when the blobs become too small
scaling approach breaks down. Conformational proper
are then largely determined by packing effects as in sim
liquids. The mean chain length then grows much faster w
f, qualitatively following a nonalgebraic dependence simi
to a recent decription put forward for rodlike and semifle
ible micelles@8#. Our result is also compatible to an effectiv
growth exponentaeff'1, in agreement with recent simula
tions @6# and even with experimental observations@20# al-
though in the latter case this agreement might be accide
in view of the rather low volume fraction probed experime
tally.

As a further development the OLMC algorithm mod
will be used for studies of the dynamic behavior of linear a
ring EP for which investigations are currently underway.
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