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An off-lattice Monte Carlo algorithm for solutions of equilibrium polyméEPs is proposed. At low and
moderate densities this is shown to reproduce faithfully(sitetio properties found recently for flexible linear
EPs using a lattice model. The molecular weight distribufiditVD) is well described in the dilute limit by a
Schultz-Zimm distribution and becomes purely exponential in the semidilute limit. Additionally, very concen-
trated molten systems are studied. The MWD remains a pure exponential in contrast to recent claims. The
mean chain mass is found to increase faster with density than in the semidilute regime due to additional
entropic interactions generated by the dense packing of spheres. We also consider systems in which the
formation of rings is allowed so that both the linear chains and the rings compete for the monomers. In
agreement with earlier predictions the MWD of the rings reveals a strong singularity whereas the MWD of the
coexisting linear chains remains essentially unaffected.

PACS numbegps): 82.35+t, 61.25.Hq, 64.60.Cn

. INTRODUCTION (NY~N* (¢l p* ) *ox p* exp( SE) (2)

The molecular mass distributiofMWD) of systems of
linear unbranched equilibrium polymefEP9 is essentially ~With exponentsa, =& =1/(1+ y)~0.46 in the dilute and
exponential[1]. In EP systems polymerization takes place a; =[1+ (y—1)/(3v,—1)]/2=0.6, §,,=1/2 in the semidi-
under condition of chemical equilibrium between polymerlute regime. The exponent~0.588 is the swollen chain
chains and their respective monomers. A classical exampléself-avoiding walk exponent in 3D.
we will focus on is provided by systems of surfactants form- Recently, these results have been questioned in an inter-
ing polydisperse solutions of long worm-like aggregatesgsting computational study where a reptation algorithm was
called giant micelle$GMs), which combine with each other, used on a cubic lattic5]. It was suggested that the MWD
or break into smaller fractiong]. becomes singulaz(N)«N~7 with 7=0.56 at very high vol-

Despite polydispersity, EPs resemble in many aspecteme fractions of order unity. This finding, if corroborated,
conventional quenched polymers where the polymerizatiomight be of some relevance in view of the observed Levy-
reaction has been deliberately terminated. Recently, the basilight dynamic behavior in a system of GMg]. This claim
scaling predictions for EPE2] based on classical polymer prompted the present off-lattice Monte CaflOLMC) ap-
physics[3] have been tested by two of (&.M., J.P.W)[1]  proach to be applied to the high density limit which was not
by means of a lattice Monte Carlo simulation based on theccessible within our previous approach. We stress that ef-
widely used bond-fluctuation mod@FM) [4]. This demon- fects only occurring at volume fractions of order one are
strated excellent agreement with theory over a very broadnlikely to be relevant for real GM, but would be interesting
range of density and temperature variation. Specifically, iton more general theoretical grounds in that the MWD in fact

was shown that the MWD takes the form probes the free energy of the dense packing of beads.
As we are going to show, new physi¢ise., additional
exp(—x)dx (N*>(N), p* < ), terms in the system free enejgytervenes indeed due to
c(x)dxe (1) packing effects of the spherical beads. This increases effec-

-1
X7 exp—yx)dx  (N*<(N),¢"*>¢). tively the growth exponent for (N), but does not effect the

. _ _ ~ scaling form of the MWD. We do not observe any trace of
The scaling parameter=N/(N) is the ratio of the chain singularity—in perfect agreement with the analytical predic-
massN and the mean magi), N* and ¢* mark the mean tions[2,8].

mass and the density at the crossover from dilute to semidi- The investigation of the high density limit is only one
lute regimes at given scission eneryand y~1.158 is the  motivation for the off-lattice algorithm proposed. In addition
susceptibility exponent of the—0 vector model in three- to this an effective OLMC for the EP algorithm is highly
dimensions(3D) [5]. The mean chain lengttN) was con- warranted to overcome the usual shortcomings of lattice
firmed to vary with densityp and the(dimensionlesssciss-  models and to serve in examining the role of polymers semi-
ion energyE as flexibility. It is also a better tool in dynamic studies of a
broader class of soft condensed matter systems where bifunc-
tionality of the chemical bonds might be extended to poly-
*Electronic address: jwittmer@dpm.univ-lyon1.fr functional bonds, as this is the case in gels and membranes.
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FIG. 1. Sketch of algorithm(a) Bonds between spherical beads break and recombine constantly with rates depending on the scission
energyE which is assumed independent of mékand number density. Each monomer has tw@aturated or unsaturajeldonds. Chains
consist of symmetrically connected lists of bonds. The data structure is based on the bonds rather than the polyméy) ¢Haissof
bonded (FENE) and nonbondedMorse interactions used in the present model. The shaded area denotes distances where scission-
recombination events may take place.

Note that the OLMC was already applied successfully toated. Chains consist of symmetrically connected lists of
rheological properties of EP reported in REF] and to sys- bonds:  jbond=pointer({bond)—ibond= pointer(bond).
tems of EP brushed 0]. Recombination of the two initially unsaturated bornéend

The scope of this paper is threefold. We want to present2 andjbond=5 connects the respective monoméamson
the OLMC scheme and to test it by comparing the new re=2 andjmon=5 in Fig. 1(@). Note that only two pointers
sults with previous findingéin the dilute and semidilute re- have to be changed and that the remaining chains behind
gime) obtained by means of our lattice Monte Carlo ap-both monomers are not involved. Breaking a saturated bond
proach described in Ref1]. Secondly, we wish to address ibond requires resetting the pointers of the two connected
the physics in the melt density regime. In addition, thebondsibond andjbond= pointeribond) to NIL.

OLMC algorithm is tested in systems in which the formation =~ As mentioned in the Introduction this data structure has
of closed loops is allowed. We demonstrate in a computebeen incorporatefll] within the widely used BFM algorithm

experiment that there is a singularity of the ring MWD [4]. For the off-lattice version presented here we have now
Co(N)«N~" wherer=5/2 in 3D[11,12. harnessed a very efficient bead-spring algorithm for polymer

This paper is organized as follows. After presenting thechains(for technical details see Réfl4]) and cast it onto the
algorithm in Sec. Il we focus in Sec. lll on the different data structure described above. This off-lattice Monte Carlo
density and chain length regimes reflected, e.g., by the disOLMC) scheme is characterized by the bonded and the non-
tribution of the radius of gyratioﬂRS(N)} versus mas$N  bonded interactions shown in Fig(hl.
and other conformational properties. We discuss subse- Each bond is described by a shifteelNE potential where
quently the MWD in Sec. IV. There we compare our OLMC a bond of lengthr has a maximum at,,,,= 1
results for mixed system@n which rings are also present
with data obtained with the BFM and with a grand canonical 5 r—ro \?
lattice algorithm based on the mapping of the EP problem on ~ YUrene(r) = = K(Ima—To)"Inj 1— e To “E.©
a Potts model. The scaling of the mean chain mass is con-
sidered in Sec. V. The theoretical concefsdiich have al- E corresponds to a constant scission energy. Note that
ready been extensively considered elsewhf2e8|) are Urene(r =To) = — E and thatU ggne near its minimum at o
briefly discusse@n passantWe show that agreement of the is harmonic, withK being the spring constant, and the po-
OLMC with our previous work is excellent for small and tential diverges logarithmically to infinity both when
moderate densities. For volume fractions larger than 0.1 we,r . and r—r ,,=2ro—r'max- Thus the FENE potential
eVide-nC.e a third molten regime. In Sec. VI we Summariz%oes not need to be truncatedr%tn andrmax and disconti-
our findings. nuities in the derivative of the potential are avoided. Follow-

ing Ref.[14] we choose the parametars,,—ro=ro—"min
Il COMPUTATIONAL ALGORITHM =Q.3 andK/T=40, T being the absolute temperature. The
units are such that the Boltzmann’s constigit=1.

It is clear that in a system of EP where scission and re- The nonbonded interaction between effective monomers
combination of bonds constantly take place, the particulars described by a Morse-type potentialbeing the distance
scheme of bookkeeping should be no trivial mat#8]. between the beads
Since chains are only transient objects the data structure of
the chains can only be based on the individual monomers or, Uy(r)=exd —2a(r—rmpp)]—2exg—a(r —rmp)] (4
even better, on the saturated or unsaturated bphidshis
idea is depicted in Fig. (&). Each bond is considered as a with parametersa=24 andr,,=0.8. The latter parameter
pointer, originating at a given monomer and pointing to the sets roughly the sphere diameter. Thetemperature of the
respective other bond with which the couple forms a nearestoil-globule transition for our model i®~0.62 so that at
neighbor, or to NIL(nowherg, if the bond is fregunsatur- T=1 we work under good solvent conditiof4].
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The model can be simulated fairly efficiently with a dy-  TABLE I. Summary of measured quantities for configurations
namic MC algorithm, as described previougly]. The trial ~ with (N)>20. Quantities tabulated: the mean chain md¢s the
update involves choosing a monomeric unit at random angolydispersity indext =(N?/(N)?, the mean end-to-end distance
attempting to displace it randomly by displacementsRe. the mean gyration radiuy, and the chain overlag/$*.
Ax,Ay,Az chosen uniformly from the interval—0.5 Note thatl increases systematically with chain overlap.
<Ax,Ay,Az=<0.5. Moves are then accepted according to

the Metropolis criterion and one Monte Carlo stéyiCS) E (N) ' Re Ry ¢l ¢*
iﬂvolves as many attempted moves as there are monomers @ o5 8 25 1.86 64 25 0.3
the system.

In equilibrium polymers the bonds between neighbors&ii: 1(9) gé 1:23 12"72 i'_‘; %.57
along the backbone of a chain are constantly subject to scisg-; 11 108 1.93 14.8 59 10
ion and recombination events. In the present model onl 5 12 181 195 199 8.0 15
bonds, stretched a distancébeyond some threshold value, 7 24 188 6.0 24 06
r,, are attempted to break so that eventually an energ&'25 8 38 1'90 7'9 3'2 0'9
Urene(r)>0 could be released if the bond breaks. Sinceo'25 9 63 1'93 10'4 4'2 1'2
each monomer may have at most two bonds in the samg ' ' ' '
time, all particles with unsaturated bondsvo for single 25 10 102 1.93 13.6 55 L7
monomers and one for chain endsay form new bonds, 0.25 11 166 1.92 17.5 7.1 2.3
once they approach each other within the same interval of-2° 12 270 1.99 23.1 9.3 3.1
distancesr,<r<1 where scissions take placéNote that 7 384 192 7.9 32 18
recombination forr <r,, would violate detailed balande. 0.5 8 62 194 103 4.2 2.5

We do not allow for branching in the present study. How-1 S 28 1.92 58 23 1.9
ever, more than two bonds per monomer are possible in print 6 46 1.94 75 3.0 2.5
ciple and this feature may be readily included in the algorith-1 7 4 1.94 9.6 3.9 3.4
mic framework. The generalization on netted structures such 8 123 1.96 12.7 5.2 4.8
as membranes or sponges is evidéNbte that this is less 1.38 7 105 1.97 10.9 4.5 5.0
straightforward in the BFM scheme due to its lattice charac4.5 6 73 1.95 8.6 3.6 4.0
ter which generates ergodicity problepn®bviously, another 1.5 7 120 1.97 10.6 4.6 5.1

big advantage of the off-lattice scheme compared to its lat=
tice precursor is its applicability to rheological problems
[10]. from Table I.(Note thatl is weakly decreasing with density

In most parts of this paper we focus on systems where npl4] and that it is slightly smaller than the “bead diameter”
formation of ring polymers is allowed. This condition has to given by the shifted Morse parametgy;,.) A similar, mar-
be observed whenever an act of polymerization takes placeginally larger volume ofy~0.25 may be obtained from the
Because there is no direct chain information in the data strucvirial expansion for quenched polymerk5].
ture this has to be done by working up the list of pointers The scission energl was varied in a similar range as in
(which adds only four lines to the source codie physical Ref.[1] from E=4 up toE=12 to yield sufficiently strong
time units the simulation becomdaster for higher E: the  chain mass variation. Note that tiN) remains always two
number of recombinations per unit time goes as e orders of magnitude smaller than the total particle number
but the chain mass only grows as e&f#). Obviously, the  within the box. Hence, from our previous stufll] one ex-
algorithm becomes even faster for the mixed systems dispects finite box-size effects to be small. This was indeed
cussed in Sec. IV B where the ring closure constraint hadorne out by finite-size test performed by varying the box
been dropped. sizes from 18 over 32 to 64°. Only the results from the
largest boxes simulated for a configuratios, ¢) are re-
ported here.

lll. CONFORMATIONAL PROPERTIES Periodically the whole system is examined, the MWD

The presented algorithm allows us to simulate a large(N) (discussed in the subsequent sectiand the distribu-
number of particles at very modest expenses of operationaions of the squared end-to-end distag&(N)) and gyra-
memory. Most of the results in the present study involvetion radius,(Ré(N)) (averaged over all chains ofparticular
65536 particles for number densities betwegr 0.125 up  massN) are counted and storePeriodic boundary condi-
to ¢=1.5. Note that our highest densities correspond to veryions are implemented and interactions between monomers
concentrated solutions. This can be better seen from the vofellow the minimum image convention. The computation of
ume fractions which vary betweanp~0.03 and 0.33. The the conformational properties of the chains then imply a res-
latter value has to be compared with floaly slightly largej  toration ofabsolutemonomer coordinates from the periodic
hard-sphere freezing volume fractiGfAlder transition”) of ~ ones for each repeating unit of the chaiMoments obtained
about one half16]—it correponds, in fact, to a relatively from these distributions are presented in Tables | and Il.
dense hard-sphere liquid. Note also that dense globules of The different simulational regimes are most easily dem-
maximal ¢=~2 are formed by quenched monodisperse poly-onstrated by the conformational changes with density and
mers in bad solverftl5]. chain mass. We demonstrate that the conformational proper-

The effective bead volume=~ 71%/6~0.22 used above ties for EP follow the same universal functions as conven-
was estimated with the measured mean bond lehgh.75  tional quenched polymers. In Fig. ZR%(N))? and
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TABLE Il. Density dependence of mean bond length(I%)*?,
the persistence lengthfor Gaussian chains of blobs, the blob size
¢ estimated from the slopes in Fig. 2, and the free energy factor
f1(¢) obtained from the exponential tail of the MWD as explained
in Sec. IV. 10'
¢ | b 3 fa
0.125 0.7574 141 4.7 0.5
0.25 0.7565 1.33 4.0 0.65 /@d 0 ¢=0.125
0.5 0.7530 1.2 3.8 0.9 Aé 0 ¢=0.25
1.0 0.7408 112 33 1.66 2 05 Zﬁf‘lw
1.38 0.7234 1.05 2.8 1.97 , o <R,>" 4=0.138
1.5 0.7158 1.02 25 221 100 ¢ v o=15 1
Ad o
10" 10°

(RZ(N))Y? are plotted versu$\. One configuration in the <N>

dilute regime and one in the concentrated lithibth at same FIG. 3. End-to-end distance, and radius of gyratiorR, vs
E=7) have been presented. In the first case one clearly Sees n .Chz’.zlin mas¢N). At Sma”e density ¢b=0.125 0.25)9and

the §Wollen coil exponent. From the “Pper d‘_"‘Shed line th‘leence, weak chain overlap the chains are swc(ktmsh’ed ling At ’
persistence length of swollen EP is estimated &S pjgh gensity and mass we obtain Gaussian statigsiotd lines.
=R,/N°%88<0.92. In the latter case only chains smaller than

the excluded volume blob of sizesize are swollen. Larger regime can be determined. This is consistent with the value

chains (N>g) show Gaussian behavior witR./\6~Ry * ; * _ 3
«NY2. This slope was used to estimate the variation of the¢/¢ given in Table | wherap™ =(N)/(47Ry/3) as usual.

effective persistence length=R,/N%° with ¢. As can be
seen from Table Ib decreases with increasing density, hence
with decreasing blob siz&which we have estimated directly ) ) ) )
from the intercept of the two slopes at the radius of gyration, e focus first on systems without rings, as in the rest of
Note that¢ is relatively small for the densities computed. e paper, and consider then the effects due to the ring clo-
The averages over all chains of the mean-square end-t§ure constraint by allowing linear chains and rings to com-

end distanceR, and the radius of gyratioR, are plotted ~Pete:
versus(N) in Fig. 3. Swollen and Gaussian scaling behavior

are again obtained for low and strong chain overlap respec-
tively. Note that, e.g., the chains fgf=1 are Gaussian for
(N)=10. Thus the position of a particular configuration
(E, @) with respect to the crossover from dilute to semidilute

IV. MOLECULAR WEIGHT DISTRIBUTION

A. Systems without rings

Figure 4 displays a typical MWB(N) obtained with the
OLMC algorithm at high density¢=1.5). This is compared
with BFM data. Thec(N) is normalized such thatp
=>uNc(N). Note that the free monomers are counted as
chains of lengtiN= 1. Both curves display to high accuracy
nice exponentials. This is a generic result for strongly over-

c(N)=exp(-E~-f ~N/p)

<N>p=1

OLMC

1] 260 460
FIG. 2. Variation of the end-to-end distanBeg (triangles and N

the radius of gyratiorRy (squarepwith chain mas$N at E=7 for

dilute (open symbolsE=7,=0.125) and concentratetlll sym- FIG. 4. MWD c(N) versusN at high density for OLMQupper
bols: E=7,$6=1) systems. The dashed lines denote the dilute excurve; E=7,/=1.5) and BFM(lower curve;E=7,84=0.5) sys-
ponenty,=0.588 which is visible for the dilute systems over the tems. Note that the distribution is always a pure exponentiahand
full range of N and for the semidilute system for smal, i.e., sign of singularity was found for whatever density or energy. These
within the blob. The slope,, = 1/2 indicates the Gaussian statistics curves are used to fft;. For OLMC we havgN)~119, f;~2.21,

for strongly overlapping long chains. for BFM (N)~98, f;~2.85.
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| ' MWD discussed above probes directly the free energy of an
N ¢=0.125 EP chain(besides the terms linear iIN mentioned above
423/\ which are fixed by the imposed dengsitywhich essentially
A “renormalizes” the scission energy.
A Y We infer from Figs. 4 and 5 that for our EP chaifgyis
My 10° : o to very high accuracy mass independent. Two classical ex-
o amples where this is indeed rigorously true are noninteract-
ing rigid rods and Gaussian chaif]. (Theref.,qis even
independent ofp.) If this is the case, the MWD becomes
then a pure exponential

mimimimimimm
W oounu
NO O WM

v A A B 0 O O

= s c(N)dN/¢p=c(x)dx=exp —x)dX, !

where the scaling variable ig=N/(N), i.e. the inverse
Lagrange multiplier equals the mean-chain lendth=1.

FIG. 5. Data collapse ajproperly normalizedMWD c(x) ver- This is in agreement with our scaling in the high density
susx=N/(N) for OLMC. In the main figure the high density scal- limit which implies thatf,q is within numerical accuracy
ing predictionc(x) =exp(—x) is verified (full line). The open sym- independent oN. We have explicitly checked that here the
bols denote density=1 and the full symbolsp=1.5. Inset: The MWD scales asc(N)x<exg—E—fqd ¢) —N/(N)] where
MWD in the dilute limit (OLMC at ¢=0.125) compares well with  f . ,only depends orp. The slightly different slope found in
the predictionc(x) exp(—yx) (dashed ling The same symbols are the dilute regime suggests, however, a weak mass effect. It is
used as in the main figure. relatively simple to understand these results from the stan-

) ) ) ~ dard theory of polymers in good solvent solutiqdi$ There
lapping chalns_—even z_it extremely hlgh volume _fractlons.the chemical potential of ends is given b= —(y
Notably, at variance with a recent findifg] no sign of  _1y/;, In(g) where¢ is size of the “blob,” i.e., the excluded

singularity is observed. . volume correlation length for chains of lengthat density
In order to corroborate this result we try to scale the

MWD obtained for different densities and scission energies. .In the semidilute limit we haveocgie g~ "/Gn-1) [3]
In Fig. 5 we have plotted théproperly normalizeHMWD (4 genotes the number of monomers within a bldience
versus the natural scaling variabe=N/(N). In the high

density limit(main figurg data from two densities at various fona= (v— 1)/ (3, — 1)In( p/ o) )
scission energiek (as indicated in the figujeollapses on a

single “master distribution”c(x) =exp(-x). In the dilute s jndependent of mass and scission energy. The constant

limit, i.e., for the nonoverlapping chains shown in the inset,reference densityp, was introduced here for dimensional
we find again a data collapse, but with slightly different o550ns. Obviously, Eq8) can strictly hold only in the

slope in linear-log coordinate$Obviously, for large chain asymptotic limit of large blob sizes¢(—0). Additionally,

length the statistics deteriorates. m one cannot exclude weak chain-length dependendg,ght
How can these results be rationalized? Within a standarg 1 put this becomes irrelevant in the scaling limit of

Flory-Huggins mean-field approad2] one may write the (N)>1 [18]
total free energy density as '

5
x=N/<N>

In the opposite dilute limit the correlation length becomes
o density independent and is given by the size of the clfain
Q[c(N)]= 2 c(N){log[c(N)]+ N+ fepaid N, ¢, E)1. =RxN". Hence,fon= (v—1)In(N) and the MWD becomes
N=1 {log a chai ' the Schultz-Zimm form given in the Introductidieq. 1)].
(5  Note that they exponent in 3D is only slightly larger than its
mean field valuey=1. Hence, the predicted power law

The first term on the rlght s the usual tran;lguonal .entrppy'depletion in the MWD for smalN is very weak and requires
The second term entails a Lagrange multiplier which fixes

the total monomer densityp. The most crucial last term a_re_lat|vely large mean chain ma$sl)>1.. This is yvhy
X . within the range of the parameters accessible essentially only
encodes the free energy of a reference chain of lehgitn

the field created by the surrounding chains and free monot-he slightly different exponential tadl(x)exp(~yx) is vis-

Mers.f engin Will in general depend on the chain lendth the IbleO'bviousl some of our simulations are in the intermedi-
density¢, and the bonded and nonbonded interaction param-. " ime )(Z'W 4*) between these limiting casédepicted
eters of the model studigd 7]. We have not computed here 9 9 P

. o s . by the two slopes in Fig.)5In order to characterize all the
irrelevant additive termgsuch as virial termswhich are not . : . .
conjugated tac(N). By functional derivation with respect to MWD with one parameter we fitted the tail of 6{N)] with

\ . e —E—f;— uN where bothu andf; are fit parameters. In the
¢(N) one readily obtains the equilibrium MWD dense limit naturally one findg(N)= yer~1. As soon as

c(N)=exf —E—fod N, b,E)— uN]. (6)  the overlap decreasegg— y. Note that thef, variation with
E for given ¢ is weak and we have only tabulated the value
We have defined heré,,— fehain— E—1 and absorbed all for the highestE, i.e., for the most strongly overlapping
contributions tof¢nq linear in N within the Lagrange multi- chains. The values are given in Table Il and are discussed in
plier. Hence, within the mean-field approximation Eg).the  the subsequent Sec. V.
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<N>
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N 0¢=0.125
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Ap=10

. exp(—N/N, V=15
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FIG. 7. Variation of mean chain magb!) with dimensionless
bond energ)E for various number densitie$ as indicated in the
figure. At low chain overlap the data are consistent with the expo-
nent §,=0.46 (dashed lines at hight density with the mean field
exponents;; = 0.5 (full lines).

FIG. 6. MWD for mixed systems containing rings. Main figure:
co MWD of rings (spheres ¢, MWD of linear chains(squares
Inset: Ring MWDs for different models and dimensions. The indi-
cated slopes confirm=5/2 in 3D andr=2 in 2D.

B. Mixed systems with linear chains and rings )
number of places where the ring can brédkand (iii) the

First we briefly assess the importance of the ring cIosurQldumeRoocNDV that two neighboring segments can explore

constraint. We allow the formation of rings so that both lin- after being disconnected)( denotes the dimension and
ear chains and rings may coexist and compete for the MONQRe relevant Flory exponent at densigf). Hence, cq

mers. In Fig. 6 we present the MWD of ringg(N) and of N~ " expn(—N/N ith 7=Dwp+1=5/2 at strong chain
linear chainsc;(N) at density¢p=1.5 andE=7. The linear Z erIapXIi[;1(D=31) avr\::d 7-272 inVD:2 Wherev=1/29 Botf:
chains appear to be unaffected by the presence of rings ary ponents are v(/ell borne out by the meastgslopes de-

spale,bas rk])ef.orecl(N)c}cek)](p(—,uN) where :‘ht?"gmp?f _is picted in the inset of Fig. 6. We compare here data we ob-
given by the Inverse of the mean mass o archans — tained with three different algorithms OLMC, BFM, and

N;. Thi b il derstood b lizing the Flory- : :

Ha mi ((;a?(n rei;gﬁl é;;:]) aesrsaogumyoszrn ?r:g ItvaIr(])gdiff(?eregtry-grand canonical Potts modeh 2D and 30- The exponents
99 P . in both dimensions are fully consistent with the predicted

speciess=0,1. The two different MWD decouple and the .o

functional derivation with respect to both yields simply Wé return now again to systems containing linear chains
cs(N) =exd — 3N, #,E) —Nu] for both species in anal- only.
ogy with Eq. (6). The free energy of the linear chain is
flan=E+ 1+ feng @s before. In the strong overlap regime

feng bECOMES again independent of mékghence, the pure

exponential seen far;(N)] and, as a matter of fact, equals  go far we have reported on the general form and scaling
the density dependent valufg(¢) obtained for the purely of the MWD. Now we want to go further and to investigate
linear systems which is tabulated in Table Il. Therefore thghe scaling of the average chain mass and the second mo-
mean mass of linear chains determines once again the chemyrent, i.e., the polydispersity index=(N?)/(N)? , with re-
cal potential. o ~ gard to densityp and scission energl (see Table)l

However, our systems dfexiblerings appear to be ring  |n the high density limit, i.e. within the validity of Eq7),
dominated, i.e., much more monomers are contained ifhe inverse Lagrange multiplier equals the mean-chain length
closed loops than in linear chains, as expected. In contrast ifs mentioned above and the polydispersity2. From the
systems of semiflexible polymer chains the formation ofngrmalization constraintp==yNc(N) one infers that the

rings is going to be strongly suppresqd@]. The MWD of  mean mass is generally given by
rings is not exponential, but rather shows a clearly pro-

nounced power law behaviorg(N)<N~" where 7=2.5.

(This does not exclude, however, a final exponential cutoff,
which can hardly be detected because of the dominating o i )
power law) The exponentr can be obtained by a simple  FOr semidilute polymer chains one obtains from Ex)

argument due to Portid1]. The ratio of both MWD gives and Eq. (8) (N)xyg'" """ HexpE) in agreement

troduction. Similarly, one finds in the dilute limi&,= 5,
Co(N)  Zo(N) [ 0 =1/(1+y)~0.46[1].
c(N) m—exﬂ chain™ T chain - ©) In Fig. 7 we have plottedN) versuskE to check for the
expected expfE) behavior. Despite the small difference in
The ratioZ,/Z, is equal to the probability of opening a both values one distinguishes for dilute systems a slope with
loop, which must be proportional tdi) the Boltzmann & =0.46 and for the dense systegi€ 1) §,,=0.5. One can
weight, exp(-E), due to the constant scission ener@i,the  verify on Fig. 7 that at concentratiofp=0.125 a crossover

V. SCALING OF THE AVERAGE CHAIN MASS

<N>:M71:\/¢8XF[E+feno(¢)]- (10
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u=(e*"1¢)"” FIG. 9. A crude rescaling attempt of mean chain mass

=(N)?/[ ¢ expE)] versus¢. Also indicated are the exfy) esti-
FIG. 8. Scaling attempt in the high density limit foN). The = mated from the MWD(starg. The mean chain mass rises faster for
collapse confirms the scaling with respectudn the high chain  large densitiesp=0.5. This regime is compared with an effective
overlap limit and thef; obtained independently from the MWD exponenta4~1 (dotted ling and the nonalgebraic density depen-
¢(N). Note that the remarkable good scaling works even in thedence Eq(11) with B_;=0.21 andB;~0.8 (dashed-dotted line
dilute limit. The dashed line marks for comparison the dilute expo-
nente, .

into the semidilute regime foE~9 occurs whereby the theory to our systems dlexibleEP with persistence length
slope of the exponential function changes fréyn=0.46 to  of order of the sphere diametésee Table ) appears to be

0, =1/2, i.e., the isolated polymer coils get large enough sQinclear. Nevertheless, it is interesting to note that the second
they start touching each other. #t=0.25 the concentration virial coefficientB,=8/3v~0.6 predicted in Ref.8] is rela-

is already sufficiently high so this happens at comparativelyjvely close to the constant measured. Alternatively, the de-
lower energiesE>5. The &, =1/2-slopes confirm that at pendence ofN) on ¢ might be represented by an effective
high densitiesfe,y becomes chain length-independent andgrowth exponentreq~1 (dotted ling. These values agree
that Eq.(10) holds. This scaling prediction is verified explic- also favorably with an earlier lattice simulati¢6] although

itly in Fig. 8 where we have plotte@N) versus the scaling this is presumably accidental due to the different micro-
variable indicated by Eq10). Here we have used the values scopic physics which must intervene.

f1(#,E) determined directly from the MWD. A plot using A proper crossover scaling between dilute and semidilute
the prediction for semidilute polymers E(®) is, however, regimes (but not with regard to the molten regimnes

not successful fory>0.5. Hence, the measuréd encapsu-  achieved by plotting N)/N* versus¢/¢* in Fig. 10. The
lates physics other than the one expected in the limit of larg@rossover lengthN* exp(—¢E) with ¢=(1/2—a,)/( e,

blobs. To corroborate this further we plot in Fig. ®  —4,)~0.26 and the crossover densify «exp(E) with
=(N)?/[pexpE)] versus¢. From Eq.(10) we know thatu
=exp(f.,g for strong overlap. Not surprisingly the data col- - ‘ - w
lapse in that limit, but not the dilute system@his will be 10 ¢ o7 ]
improved in Fig. 10, see belowAlso indicated are thd, OLMC <]>+//&/H=006/y<
(starg directly estimated from the MWD in the strong chain s u® »% Ect
overlap limit. Notably, for¢=0.5 the mean mass appears to /«' o E=2
increase much faster than the growth exponept=0.6. ‘= > fE:i
This breakdown of Eq(8)—but not of Eq.(10)—is not un- ; o | SE:: |
expected if one bears in mind that the scaling arguments can v +E=7
only be valid in the limit[3] of —0 andg— <, i.e. when e
the blob is larger enough. This result suggests to rewrite Eq. eE10
(8) as a systematic series expansion *E=12
AE=13
fend $)=B_1IN($/ bo) +B1p+ -, (11) o

10°

where in order to match semidilute and melt regime we
chooseB_;=(y—1)/(3»—1)~2.1 and$,~0.018. The fit FIG. 10. Dilute-semidilute crossover scalifily)/N* vs ¢/ ¢*
using Eq.(11) with B;~0.8, depicted in Fig. 9, is only quali- for oLMC and BFM (shifted downwards for clarity For densities
tatively satisfactory and further study is warranted. Thes=0.5 the OLMC data do not scale and are systematically above
above expansion is motivated by a recent second viriafhe semidilute asymptote. This is due to additional entropic interac-

theory on wormlike micelles and rigid rods interacting viations between the dense beads which increases the mean chain
hardcore excluded volumg8]. The applicability of this mass.
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=q(1-¢)~0.34 are readily found by matching the The mean chain length of linear EP is found to vary with
asymptotic behaviors of the dilute and semi-dilute regimedensity ¢ and scission energlf as(N)x $“exp(sE) as ob-

We have included data from both OLMC and the BFM. Forserved in our earlier bond fluctuation model investigafibh
clarity, the BFM data have been shifted downwards by awith exponentsa,= §,~0.46 in the dilute regime and,
factor 10. As one anticipates from Fig. 9, only OLMC data =0.6,5,,=0.5 in the semidilute regime. This holds only for
for $=<0.5, i.e. volume fractions smaller than 0.1 collapsevolume fractions smaller than 0.1.

properly on the predicted asymptotes—confirming hence the At higher densities when the blobs become too small the
polymer physics expressed in E@)—while at higher den- scaling approach breaks down. Conformational properties

sities simple liquids physics becomes relevant. are then largely determined by packing effects as in simple
liquids. The mean chain length then grows much faster with
VI. SUMMARY ¢, qualitatively following a nonalgebraic dependence similar

, to a recent decription put forward for rodlike and semiflex-

We have proposed here a new off-lattice Monte Carlopje micelles[8]. Our result is also compatible to an effective
algorithm (OLMC) for systems of equilibrium polymers groih exponentreg~1, in agreement with recent simula-
(EPS9. It is shown that this moo!el falthful_ly reprod_uces the tions [6] and even with experimental observatidig] al-
results of Ref[1]: the MWD of linear EP is essentially ex- thq,gh in the latter case this agreement might be accidental
ponential even in the limit of very high density in contrast to ;, yiew of the rather low volume fraction probed experimen-
recent claim[6]. Note that our findings do not support the tally.
specific explanation put forward in Refr] for the observed As a further development the OLMC algorithm model
Levy-flight dynamic behavior in GM which requires a sin- | e used for studies of the dynamic behavior of linear and

gularity in the MWD of linear chains. However, a simple ing Ep for which investigations are currently underway.
exponential law might be enough to explain an effective

Levy flight behavior for a certain regime of time scal&§].
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